Skip to main content
Background Image
  1. Posts/

Python: Implementing a Hugging Face Model API

··246 words·2 mins· loading · loading ·
yuzjing
Author
yuzjing
Table of Contents

🧠 Project Goal
#

Use the transformers library to load a Hugging Face reranker model and expose it as a REST API using FastAPI.

🧪 Code Example
#

 1from fastapi import FastAPI, HTTPException
 2from pydantic import BaseModel
 3from transformers import AutoTokenizer, AutoModel
 4import torch
 5from torch.nn import functional as F
 6
 7# Load the model and tokenizer
 8tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
 9model = AutoModel.from_pretrained("BAAI/bge-reranker-large")
10
11# Move to GPU if available (optional)
12if torch.cuda.is_available():
13    model = model.to("cuda")
14
15app = FastAPI(title="BGE Reranker API", version="1.0")
16
17# Define the request body model
18class RerankRequest(BaseModel):
19    query: str
20    documents: list[str]
21
22@app.post("/rerank")
23async def rerank(request: RerankRequest):
24    try:
25        # Tokenize the query and documents separately
26        query_inputs = tokenizer([request.query], padding=True, truncation=True, return_tensors="pt")
27        doc_inputs = tokenizer(request.documents, padding=True, truncation=True, return_tensors="pt")
28
29        if torch.cuda.is_available():
30            query_inputs = {k: v.to("cuda") for k, v in query_inputs.items()}
31            doc_inputs = {k: v.to("cuda") for k, v in doc_inputs.items()}
32
33        with torch.no_grad():
34            query_outputs = model(**query_inputs, return_dict=True)
35            doc_outputs = model(**doc_inputs, return_dict=True)
36
37            query_embedding = query_outputs.pooler_output
38            document_embeddings = doc_outputs.pooler_output
39
40        # Compute cosine similarity between the query embedding and each document embedding
41        scores = F.cosine_similarity(query_embedding, document_embeddings, dim=1).tolist()
42
43        ranked_docs = sorted(
44            zip(request.documents, scores),
45            key=lambda x: x,
46            reverse=True
47        )
48
49        return {"results": [{"document": doc, "score": score} for doc, score in ranked_docs]}
50    except Exception as e:
51        raise HTTPException(status_code=500, detail=str(e))
52
53if __name__ == "__main__":
54    import uvicorn
55    uvicorn.run(app, host="0.0.0.0", port=58222)